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 This study investigates the performance of GPT-4, an advanced AI model developed by OpenAI, 

on the force concept inventory (FCI) to evaluate its accuracy, reasoning patterns, and the 
occurrence of false positives and false negatives. GPT-4 was tasked with answering the FCI 
questions across multiple sessions. Key findings include GPT-4’s proficiency in several FCI items, 
particularly those related to Newton’s third law, achieving perfect scores on many items. 
However, it struggled significantly with questions involving the interpretation of figures and 
spatial reasoning, resulting in a higher occurrence of false negatives where the reasoning was 
correct, but the answers were incorrect. Additionally, GPT-4 displayed several conceptual errors, 
such as misunderstanding the effect of friction and retaining the outdated impetus theory of 
motion. The study’s findings emphasize the importance of refining AI-driven tools to make them 
more effective in educational settings. Addressing both AI limitations and common 
misconceptions in physics can lead to improved educational outcomes. 
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INTRODUCTION 

The integration of artificial intelligence (AI) into educational settings has gained significant attention in 
recent years (Yilmaz et al., 2023). Advanced AI models, such as GPT-4, have shown remarkable capabilities in 
generating human-like responses and reasoning. However, understanding how effectively these models can 
replicate human cognitive processes, particularly in complex domains like physics, is crucial for their 
application in enhancing educational outcomes. This study addresses the educational challenge of accurately 
assessing students’ conceptual understanding in physics. By analyzing AI-generated responses, we aim to 
identify and investigate misconceptions, thereby informing targeted instructional strategies and improving 
the integration of AI-driven educational tools into curricula (Anderson et al., 2019). Furthermore, examining 
the reasoning patterns of AI can point out the potential of AI to promote higher-order learning and critical 
thinking skills. 
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The study focuses on analyzing the accuracy of responses, identifying false positives and false negatives, 
and understanding the reasoning patterns of AI. Similar previous studies (Kortemeyer, 2023; West, 2023) 
employed an earlier version of GPT, which could not read figures. Therefore, they generated text versions of 
the questions that included figures and then assessed the performance of GPT. However, this study used 
GPT-4, which can read and analyze figures directly. 

The GPT-4’s responses on the force concept inventory (FCI) is not only relevant to AI developers but also 
holds significant educational value for science educators. By examining responses, we can learn common 
misconceptions and reasoning patterns that both AI exhibit. This information is crucial for educators to 
develop targeted instructional strategies and improve the effectiveness of their teaching methods when using 
AI. For instance, if GPT-4 consistently identifies correct answers with flawed reasoning, educators can 
recognize similar patterns in student responses and address these misconceptions more effectively in their 
instruction. Furthermore, understanding the AI’s performance on the FCI can help educators enhance the 
validity and reliability of this diagnostic tool.  

AI in Education 

AI technologies have been increasingly adopted in educational environments to enhance learning 
outcomes and personalize education. Studies have shown that AI can support various educational activities, 
including tutoring, grading, and providing feedback (Chen et al., 2020; Holmes et al., 2019). AI-driven 
educational tools can adapt to individual learning styles and paces, offering a unique educational experience 
that traditional methods often cannot achieve (Balta, 2024; Luckin et al., 2016). For instance, AI can analyze 
student performance data to identify learning gaps and suggest targeted interventions (Roll & Wylie, 2016). 
Furthermore, AI can facilitate collaborative learning by matching students with complementary strengths and 
weaknesses (Rosé et al., 2019).  

Recent research suggests that AI can potentially enhance conceptual understanding and critical thinking 
in students by providing sophisticated reasoning and problem-solving support (Chen et al., 2020; de los 
Ángeles Domínguez-González, 2023; Holmes et al., 2019). These capabilities allow AI to go beyond mere 
information retrieval, fostering higher-order cognitive skills essential for mastering complex subjects like 
physics. 

AI in Physics Education 

AI’s role in physics education is increasingly recognized as crucial for improving learning outcomes. AI 
technologies can provide personalized feedback, identify student misconceptions, and enhance the overall 
learning experience (Buabeng, 2018). Studies by Wink and Bonivento (2023) highlight the opportunities AI 
presents in physics education, such as adaptive learning environments and real-time feedback mechanisms. 
Tschisgale et al. (2023) explore integrating AI-based methods into qualitative research, suggesting that 
computational grounded theory can lead to new developments in student learning behaviors and 
misconceptions. 

Mustofa et al. (2024) reviewed the literature on AI in physics problem-solving, emphasizing the potential 
of AI tools like ChatGPT to assist students in understanding complex concepts. Yeadon and Hardy (2024) 
provided a comprehensive review of AI’s impact on physics education from GCSE to university levels, showing 
that AI can support various educational stages and needs. Lai and Cheong (2022) discussed the educational 
opportunities and challenges in augmented reality (AR) implementations in physics education. They 
highlighted how AR, combined with AI, can provide immersive learning experiences that enhance conceptual 
understanding and engagement. Dahlkemper et al. (2023) investigated how physics students evaluate AI 
responses on comprehension questions, focusing on the perceived scientific accuracy and linguistic quality 
of ChatGPT. Their findings suggest that while AI can be a valuable educational tool, it is crucial to consider 
student perceptions and trust in AI-generated content. 

The integration of AI into specialized fields like medical physics and high energy physics also offers 
significant educational visions. Andersson et al. (2021) examined the impact of AI on the medical physics 
profession from a Swedish perspective, highlighting the need for ongoing education and training to keep pace 
with technological advancements. Zanca et al. (2021) discussed the focus on AI in medical physics, particularly 
its role in improving diagnostic accuracy and treatment planning. Kuzu (2021) presented a machine learning 
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approach in high energy physics, demonstrating how AI can enhance data analysis and experimental 
accuracy. Boehnlein et al. (2021) provided an overview of AI and machine learning applications in nuclear 
physics, underlining the importance of interdisciplinary education to prepare students for careers in these 
cutting-edge fields. Wulff (2024) explored the role of language in physics education and how AI might enhance 
language-related research and instruction. This area of study is crucial as it addresses the communication 
barriers that can hinder effective teaching and learning in physics. Krupp et al. (2024) investigated the negative 
consequences of GPT-4 assisted problem-solving in physics education. Their findings point out the risks of 
unexamined acceptance of AI-generated solutions, which can lead to superficial understanding and 
dependence on AI for problem-solving. 

The Force Concept Inventory  

Physics education often relies on diagnostic tools to assess students’ understanding of fundamental 
concepts. FCI is a widely used instrument designed to evaluate students’ grasp of Newtonian mechanics 
(Hestenes et al., 1992). It consists of multiple-choice questions that probe common misconceptions and core 
principles in physics. The FCI’s effectiveness lies in its ability to reveal students’ reasoning processes and 
identify specific areas of misunderstanding (Hake, 1998). Research has shown that the FCI can effectively 
measure conceptual gains in students, particularly when used in conjunction with interactive engagement 
methods (Hake, 1998; Halloun & Hestenes, 1985; Hestenes & Halloun, 1995). 

One of the key strengths of the FCI is its ability to identify specific misconceptions that students hold. 
Misconceptions in physics are deeply rooted, intuitive beliefs that often contradict scientific principles. For 
example, many students believe that a constant force is required to keep an object in motion, which 
contradicts Newton’s first law of motion. The FCI helps educators determine these misconceptions and 
address them directly through targeted instruction and interactive activities (Hestenes et al., 1992; McDermott 
& Redish, 1999).  

The FCI questions cover a range of topics in Newtonian mechanics, including kinematics, dynamics, forces 
and interactions, and Newton’s third law. Each question on the FCI is designed to test specific aspects of these 
topics, often presenting scenarios that are counterintuitive to students’ everyday experiences (Balta & 
Eryılmaz, 2017). For example, a question might ask about the forces acting on an empty office chair resting 
on a floor, which can reveal whether students correctly understand the concept of normal force and 
equilibrium. 

Reasoning in Physics Education 

Reasoning is a critical component of learning and understanding physics. Students develop reasoning 
skills through a combination of instruction, practice, and the integration of new information with existing 
knowledge (Chi et al., 1989). Effective reasoning in physics involves the ability to apply conceptual knowledge 
to solve problems, analyze scenarios, and evaluate outcomes. Research has shown that students often 
struggle with reasoning in physics due to persistent misconceptions and intuitive beliefs that conflict with 
scientific principles (Hammer, 1996). 

Studies have demonstrated that targeted instructional interventions can improve students’ reasoning 
abilities in physics. For instance, interactive engagement methods and formative assessments have been 
shown to enhance students’ conceptual understanding and reasoning skills (Docktor & Mestre, 2014; Hake, 
1998). By focusing on reasoning, educators can better address the underlying misconceptions that hinder 
students’ learning and foster a deeper understanding of physics concepts. 

Recent research also emphasizes the role of metacognitive strategies in improving physics reasoning. 
When students are taught to reflect on their thinking processes and evaluate their understanding, they are 
more likely to develop effective problem-solving skills and a deeper comprehension of physics principles 
(Yerushalmi et al., 2017; Zohar & Dori, 2012). These findings suggest that incorporating metacognitive training 
into physics education can be a powerful tool for enhancing reasoning and overall learning outcomes. 
Additionally, studies have shown that integrating computer-based simulations and interactive learning 
environments can significantly enhance students’ reasoning skills in physics by providing immediate feedback 
and enabling exploration of complex concepts (Smith & Knight, 2021; Van der Veen & Van den Berg, 2021). 
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AI and Physics Conceptual Understanding 

Research on AI’s ability to understand and reason about physics concepts has shown hopeful results. AI 
models can be trained to solve physics problems and generate explanations that align with human reasoning 
patterns (Lample & Charton, 2019). However, the extent to which AI models can accurately imitate human 
cognitive processes, particularly in identifying and addressing misconceptions, remains an area of active 
investigation (Bengio et al., 2020). Studies have demonstrated that AI can perform well on standard physics 
problems, but its ability to handle conceptual questions like those on the FCI varies (Schoenfeld, 2018). AI 
models often surpass in computation but may struggle with the conceptual concepts that require deeper 
understanding (Bengio et al., 2020).  

Recent studies have demonstrated significant improvements in GPT-4’s reasoning capabilities in physics 
compared to its predecessors. According to West (2023), GPT-4 has shown near expert-level competence in 
responding to FCI questions, achieving a much higher accuracy rate than GPT-3.5. This improvement is 
attributed to GPT-4’s enhanced ability to process and apply conceptual knowledge rather than relying solely 
on rote memorization or pattern recognition. The study also highlights that GPT-4’s responses are more stable 
and less prone to variability when subjected to different prompts or perturbations, indicating a more robust 
understanding of the underlying physics concepts (West, 2023). A comprehensive literature review by 
Mahligawati et al. (2023) indicates the current state of AI in physics education, providing an in-depth analysis 
of the benefits and challenges associated with its implementation. 

Despite the advancements, GPT-4 still exhibits notable limitations. GPT-4’s explanations can sometimes 
contain minor errors or inconsistencies, suggesting that while it has a strong grasp of many concepts, it still 
lacks the depth of understanding found in human experts. While it performs well on most FCI questions, it 
struggles with certain types of conceptual reasoning, particularly those involving spatial relationships and 
directionality. For example, GPT-4 has difficulty consistently applying the correct principles in problems that 
require understanding the cardinal directions of motion (West, 2023).  

The ability of AI to interpret and reason about graphs in kinematics is crucial for assessing its overall 
physics competence. Polverini and Gregorcic (2024) explored GPT-4’s performance on the test of 
understanding graphs in kinematics. Their findings indicate that GPT-4 performs comparably to high school 
students in interpreting kinematics graphs but exhibits significant differences in the distribution of 
correctness and the reasoning processes displayed. While GPT-4 was successful in proposing productive 
strategies for solving the tasks, it had difficulties correctly interpreting the visual aspects of graphs, suggesting 
the need for critical approaches when using AI as a tutor or assistive tool in physics education (Polverini & 
Gregorcic, 2024). 

Kortemeyer (2023) examined whether an AI agent could pass an introductory physics course by evaluating 
GPT’s responses to typical course assessments. The study found that while GPT could pass the course, it 
exhibited many preconceptions and errors common among beginning learners. The AI’s performance was 
comparable to that of a student with a rudimentary understanding of physics, capable of generating plausible 
answers but often stumbling on detailed calculations and deeper conceptual understanding (Kortemeyer, 
2023).  

Integrating AI into physics education offers both challenges and opportunities. Studies such as those by 
Lai and Cheong (2022) and Dahlkemper et al. (2023) demonstrate the potential for AI to enhance learning 
environments and provide valuable feedback to students. However, it is essential to consider the limitations 
and biases that may arise from relying heavily on AI, as noted by Wang (2020) and Ge and Hu (2020). 

Comparing AI and Human Learners 

One of the primary areas of comparison between AI and human learners is in their reasoning patterns. 
Human learners typically develop reasoning skills through a combination of instruction, practice, and the 
integration of new information with existing knowledge (Chi et al., 1989). In contrast, AI models like GPT-4 rely 
on vast amounts of data and sophisticated algorithms to generate responses. This fundamental difference 
often results in distinct reasoning pathways. 

Studies have shown that while AI can correctly answer a significant portion of FCI questions, it often does 
so using different reasoning pathways compared to students. For example, AI models may use statistical 
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patterns and correlations found in the training data, which can sometimes lead to correct answers without a 
deep understanding of the underlying principles (Geiger et al., 2021). In contrast, human learners typically 
build their understanding through conceptual frameworks and experiential learning. 

Another important aspect of comparing AI and human learners is the nature and frequency of 
misconceptions and errors. Human learners often hold persistent misconceptions about fundamental physics 
concepts, such as the nature of force and motion (Hestenes et al., 1992). These misconceptions can be difficult 
to overcome and require targeted instructional interventions. AI models, on the other hand, can also exhibit 
errors, but these are usually different from those seen in human learners. For instance, AI models might 
generate responses that are statistically likely but conceptually incorrect. Analyzing these errors can reveal 
the limitations of AI reasoning and suggest areas for improvement.  

A critical factor in comparing AI and human learners is the stability and consistency of their responses. 
Human learners can exhibit variability in their answers based on factors such as stress, fatigue, and 
confidence levels (Schunk & Pajares, 2002). In contrast, AI models like GPT-4 can provide consistent responses 
given the same prompts, which can be advantageous in educational settings. However, this consistency can 
also be a drawback if the AI’s underlying misconceptions are not addressed, leading to repeated errors. 

AI models have shown varying levels of performance on conceptual versus computational tasks. Research 
has demonstrated that AI often excels in computational tasks that require precise calculations and the 
application of formulas (Lample & Charton, 2019). However, conceptual tasks that require a deep 
understanding of physical principles and the ability to synthesize information across different contexts pose 
a greater challenge. For instance, while GPT-4 can accurately solve physics problems that involve 
straightforward calculations, it may struggle with FCI questions that probe deeper conceptual understanding. 
A study by Polverini and Gregorcic (2024) found that while GPT-4 performed comparably to high school 
students, it exhibited significant differences in the distribution of correctness and reasoning processes.  

The quality of AI responses can be significantly influenced by the design of prompts. Prompt engineering 
involves crafting specific queries that guide the AI towards more accurate and relevant answers. Polverini and 
Gregorcic (2024) demonstrated that carefully crafted prompts could enhance GPT-4’s performance on physics 
problems. By specifying the context and asking the AI to behave like a physics teacher, they were able to elicit 
more accurate and detailed responses. 

False Positives and False Negatives in Physics Education 

The accurate assessment of students’ understanding is vital for diagnosing misconceptions and guiding 
instructional strategies. False positives and false negatives in educational assessments can significantly 
impact the effectiveness of teaching and learning. Hestenes et al. (1992), the creators of the FCI, initially 
highlighted the importance of accurately diagnosing students’ misconceptions in physics. They emphasized 
that understanding the nature of these misconceptions is crucial for developing effective instructional 
interventions. The study demonstrated that while the FCI is effective in identifying common misconceptions, 
the tool’s accuracy can be affected by false positives and false negatives.  

McDermott and Redish (1999) reviewed the state of physics education research, emphasizing the 
persistent nature of misconceptions in students’ understanding of physics concepts. They noted that 
misconceptions are often deeply rooted and resistant to traditional instructional methods, leading to frequent 
occurrences of false positives when students’ incorrect beliefs align with superficially correct answers. 
Hammer (1996) explored students’ beliefs about force and motion, identifying specific misconceptions that 
lead to false positives and false negatives in assessments. Hammer (1996) found that students often hold 
intuitive beliefs that conflict with Newtonian physics, such as the idea that a constant force is needed to 
maintain motion. These misconceptions can result in correct answers based on incorrect reasoning (false 
positives) or incorrect answers despite correct reasoning processes (false negatives).  

Geiger et al. (2021) conducted a comparative analysis of misconceptions in physics held by both human 
students and AI models. The study found that AI models, including GPT-3 and GPT-4, often produced false 
positives by overgeneralizing patterns learned from training data. For example, an AI might correctly identify 
that an object in motion stays in motion but provide incorrect reasoning based on patterns rather than a deep 
understanding of Newtonian mechanics. Another study by Kortemeyer (2023) evaluated whether an AI agent 



 
Aldazharova et al. 

6 / 16 Contemporary Educational Technology, 16(4), ep538 
 

could pass an introductory physics course. The study highlighted the prevalence of false negatives in AI-
generated responses, where the AI provided correct answers with incorrect reasoning. These false negatives 
were attributed to the AI’s lack of well understanding of physics concepts, leading to correct answers being 
marked as incorrect due to flawed reasoning. The AI’s tendency to produce false positives and false negatives 
was particularly obvious in questions involving the interpretation of graphs, where it failed to correctly analyze 
visual information despite providing seemingly logical reasoning (Polverini & Gregorcic, 2024). 

While previous studies have demonstrated AI’s proficiency in solving computational problems and offering 
instructional support in physics, a significant gap exists in its ability to handle conceptual assessments such 
as those found in the FCI. These assessments require a deep understanding of fundamental principles and 
often involve complex visual data. Current AI models, including GPT-4, have demonstrated difficulties in such 
areas, often producing false negatives where correct reasoning is provided alongside incorrect answers. This 
study seeks to address these gaps by investigating GPT-4’s performance on FCI questions, focusing on its 
reasoning patterns and the occurrence of false positives and false negatives. Depending on the above 
literature review from different dimensions, we formulated following research question: What is the 
performance of GPT-4 on FCI questions in terms of correctness, reasoning, false positives, and false negatives? 

METHOD 

Participants and Instrument 

There were no human participants in this study, but rather the focus was on the AI system. The AI model 
used in this study was GPT-4, developed by OpenAI (2023). GPT-4 was tasked with answering the FCI questions 
across multiple sessions.  

The primary instrument used for this study was the FCI, a well-established diagnostic tool in physics 
education designed to assess students’ understanding of Newtonian mechanics. The FCI consists of 30 
multiple-choice questions that probe various misconceptions and fundamental principles in physics 
(Hestenes et al., 1992). 

Data Collection 

For each item of the FCI, we first captured an image of the item from the PDF document using the Snipping 
Tool. Subsequently, we uploaded the image version of the item to GPT-4 along with a straightforward prompt 
that sought both a response and a concise explanation. The items were posed utilizing the GPT-4 version that 
was released to the public on March 14, 2023. The entire test was presented to GPT-4 across 1200 distinct 
chat sessions, repeating each of the 30 items 40 times. To prevent GPT-4 from referencing its own previous 
responses for answers, each item was consistently introduced in a fresh conversation. The performance of 
GPT-4 was documented, focusing on correct answers, false positives, false negatives, and reasoning.  

In this study, we chose to repeat each of the 30 FCI items 40 times. This decision was based on the need 
to obtain a statistically significant representation of GPT-4’s performance while controlling for variability 
across sessions. Previous research has indicated that AI models, including GPT-4, can provide different 
responses to the same question depending on session conditions. By selecting 40 trials, we aimed to ensure 
a reliable measure of performance trends, including false positives, false negatives, and reasoning quality. 

Data Analysis 

Collected data focused on the accuracy of answers, the quality of reasoning, and the occurrence of false 
positives and false negatives. First, for the overall performance, the number of correct answers provided by 
GPT-4 was tallied. Performance trends were identified to highlight areas of strength and weakness. Second, 
the frequency and distribution of false positives and false negatives were documented. Third, detailed 
analysis was conducted for specific FCI items where GPT-4 demonstrated notable performance patterns. For 
example, items where GPT-4 consistently failed or succeeded were examined closely. Fourth, the reasoning 
provided by GPT-4 qualitatively analyzed to identify common themes, conceptual misunderstandings, and 
differences in cognitive approaches. Special attention was given to the AI’s ability to interpret figures and 
diagrams, as this was identified as a consistent challenge area. 
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RESULTS 

GPT4’s Performance 

The study started with an assessment of GPT-4’s capability to respond to 30 questions from the FCI. 
Individual questions were posed one by one in different sessions. However, there are group of question in 
FCI with same description (for example 5-6, and 8-11 items). They were given together but at different sections 
each time. Figure 1 summarizes the performance of GPT-4 across FCI items, offering a visual representation 
of its accuracy and areas of difficulty. 

In this rigorous evaluation, GPT-4 demonstrated a high level of proficiency on several items, accurately 
responding to questions Q1, Q2, Q4, Q13, Q15, Q16, Q17, Q18, Q22, Q24, and Q25 without mistakes. Its 
performance was not perfect, however, as it encountered minor challenges, such as a single error in question 
Q3, two errors in question Q27, and a more noticeable struggle with question Q28, where four mistakes were 
recorded. Conversely, certain questions proved to be consistent stumbling blocks for GPT-4, with items Q6, 
Q7, Q12, and Q14 posing significant challenges and receiving no correct answers in any trial. 

GPT4’s False Positives and False Negatives  

When the answer is incorrect and the reasoning is correct, it is called false negative. Similarly, correct 
answer and incorrect reasoning results in a false positive. We observed only one false positive while many 
false negatives. In items 7, 12, and 14 all provided answers are false negatives. Among these, in items 7 and 
12 GPT-4 always indicated the same wrong choice (that was B for item 7 and C for item 12) while the reasoning 
was correct. However, in items 14 all reasonings were correct but different wrong answers were provided. For 
example, in item 14 the incorrect choices varied between choice B (11) and C (29). 

False negatives were observed in 14 items (6, 7, 8, 9, 10, 11, 12, 14, 21, 23, 26, 27, 28, and 30). Items 26, 27, 
and 28 each contained only one false negative while others included false negatives varying between eight 
and 30. For example, Item 23 had only two correct answers (B) while the rest were false negatives with wrong 
choices varied between A (22), C (5), D (8), and E (3). GPT4’s answers are provided in Appendix A with false 
negatives yellow and false positives green colored. An example of false negative in item 21 is as follows: 

The correct answer is (B). When the rocket engine is turned on at point “b” and produces a constant 
thrust perpendicular to the initial direction of motion, the rocket will begin to curve in the direction 
of the thrust. The constant sideways thrust will cause the rocket to follow a curved path that is 
concave towards the direction of the thrust (to the right, from the point of view of the diagram). 
This is due to the fact that the rocket is already moving to the right, and the thrust adds a constant 
acceleration upwards, resulting in a parabolic trajectory (20th trial). 

This reasoning is correct, however, path indicated in B is not a curved path, thus, the answer is incorrect. 

In 40 trials of each item, false positives were observed only once among the entire responses, that is in 
26th item. The item 26 is also the sole item without a figure that includes a false negative. Items 25, 26, and 27 
are a series of items related to a woman horizontally pushing a box on a horizontal rough surface with 

 
Figure 1. Performance of GPT4 on FCI (Source: Authors) 
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constant velocity. The 26th item asks the movement of the box if the woman doubles the constant horizontal 
force. GPT-4 provides the correct answer (with a continuously increasing speed) with a wrong reasoning as 
follows: 

The correct answer is (E). If the woman doubles the force, according to Newton’s second law, the 
acceleration of the box will double, because the mass remains the same (𝐹𝐹 = 𝑚𝑚𝑚𝑚). If the box starts 
from rest, it will continue to accelerate as long as the force is applied, which means its speed will 
continuously increase. 

Ignoring the friction force and claiming that acceleration will double is incorrect, however, finally stating 
that speed will continuously increase is correct. Since “with a continuously increasing speed” is the correct 
choice, we accepted this reasoning as a false positive. 

GPT4’s Problems with Figures 

A distinct area of difficulty for GPT-4 involved interpreting figures, particularly those depicting trajectories. 
The study determined several questions where GPT-4 failed to correctly analyze illustrations, leading to 
uniform inaccuracies in its responses. For instance, item 7, which involved predicting the trajectory of a steel 
ball post-string breakage (Figure 2), saw GPT-4 consistently opt for an incorrect path despite valid reasoning 
based on Newton’s first law of motion. 

In all 40 trials GPT-4 indicated C as the correct path for the 7th item. The answer is incorrect; however, the 
reasoning was correct in all trials. Below is the reasoning during the 3rd trial:  

When the string breaks, the steel ball will no longer be under the centripetal force that was keeping 
it in the circular path. Instead, it will move in a straight line tangent to the circle at the point where 
the string breaks, due to its inertia. This path corresponds to option (C), which is a straight line that 
represents the direction the ball was moving at the moment the string broke. This is consistent with 
Newton’s first law of motion, which states that an object in motion will stay in motion with the same 
speed and in the same direction unless acted upon by an unbalanced force. Since there is no more 
force acting on the ball once the string breaks, it will continue in a straight line path. 

Another evidence for GPT-4’s incorrect analyses of figures is seen in item 6 (Figure 3). In this item, a ball is 
shot at high speed into a frictionless channel in the shape of a segment of a circle which is anchored to a 
frictionless horizontal tabletop. Which path in Figure 3 would the ball most closely follow after it exits the 
channel is asked.  

 
Figure 2. FCI 7th item (Source: Hestenes et al., 1992) 

 
Figure 3. FCI 6th item (Source: Hestenes et al., 1992) 
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In this question GPT-4 sees the curved path C or E as a straight path! The answer is incorrect, however, the 
reasoning is correct. Below is the answer provided in the 18th trial: 

After the ball exits the channel at “r,” the ball will continue to move in a straight line in the direction 
of the tangent to the circle at point “r” due to inertia (Newton’s first law of motion). There are no 
forces acting on the ball in the horizontal direction (since the table is frictionless and air resistance 
is negligible), so it will not follow a curved path after exiting the channel. Therefore, the ball will 
move in a straight line, which corresponds with path (C). 

GPT4’s Problems with Horizontal Planes 

GPT-4 sometimes omits the horizontal table under objects, argues the downward effect of gravity, and 
claims that gravity curves the ball’s path. An example of this reasoning was provided on the 20th trial in item 
6: 

Once the ball exits the channel, it will follow a path determined by its velocity at the point of exit 
and the gravitational force acting on it. Because the table is frictionless, no horizontal force will be 
acting on the ball after it leaves the channel, meaning it will not accelerate in the horizontal 
direction. The only force acting on it will be gravity, which will pull it down in a vertical direction. The 
combination of its horizontal velocity and vertical acceleration due to gravity will cause the ball to 
follow a parabolic trajectory, which is option (E). This path is consistent with projectile motion. 

Another example in which GPT-4 ignores the horizontality is seen in item 8. In this item, a hockey puck is 
sliding at constant speed on a frictionless horizontal surface. The puck receives a swift horizontal kick in a 
direction perpendicular to its motion. The question asks which path the puck would most closely follow. GPT-
4’s incorrect reasoning, where it ignores the reaction of the table and includes only gravity to curve the puck’s 
path is, as follows: 

The correct path the puck would most closely follow after receiving the kick is (E). This is because 
the puck already has a horizontal velocity (𝑣𝑣0) and then receives an additional kick upward. The 
result of these two motions—horizontal and vertical—is a resultant vector that causes the puck to 
follow a parabolic trajectory due to gravity, assuming no other forces act upon it after the kick (13th 
trial). 

Conceptual Mistakes by GPT4 

The most obvious conceptual mistake by GPT-4 is its belief that as speed increases, the friction force also 
increases. This is evident in item 26. For example, the reasoning in the 35th trial is as follows:  

Doubling the constant horizontal force would initially result in an unbalanced force acting on the 
box, which, according to Newton’s second law of motion (𝐹𝐹 = 𝑚𝑚𝑚𝑚), would cause the box to 
accelerate. However, as the box accelerates, the force of friction may increase until it balances the 
applied force again, leading to a new constant speed. The new constant speed would not 
necessarily be double the original speed, because the relationship between force and speed is not 
direct; it’s the relationship between force and acceleration that’s direct. Therefore, the correct 
answer is: 

(B) with a constant speed that is greater than the speed “𝑣𝑣0” in the previous question, but not 
necessarily twice as great. 

Another conceptual mistake, repeated five times in item 11, is GPT-4’s claim that a frictionless surface 
results in no normal force from the surface. This can be seen in the 31st trial’s reasoning as follows: 

Along the frictionless path you have chosen in question 8, the main force(s) acting on the puck after 
receiving the kick is/are (B) a downward force of gravity. On a frictionless surface, the only force 
acting on the puck would be gravity, which acts downwards. There would be no horizontal forces 
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because friction is absent, and no upward forces from the surface if we are considering it to be an 
idealized frictionless surface. 

Another conceptual mistake exists in providing answers to item 29. GPT-4 claims that there is a net 
downward force of air pressure on the chair. The following reasoning is from the 12th trial:  

For question 29, the correct answer is (D) 1, 2, and 3. An office chair at rest is still subject to the 
force of gravity acting downward. The floor exerts an upward normal force to support the chair. 
And there is also a net downward force exerted by the air, which is the weight of the air above the 
chair (even if minimal). 

Impetus Theory in GPT-4 

Another conceptual mistake is that GPT-4 thinks there is impetus, one of the Aristotelian principles of 
motion (Jung, 2020). This conception was assessed in item 5, which asks which forces are acting on the ball 
when it is within the frictionless channel. Some of the results, including the impetus concept, provided by GPT-
4 are as follows:  

A force in the direction of motion, which would be the ball’s inertia carrying it forward along the 
channel (15th trial). 

The force in the direction of motion is indeed acting on the ball because the ball is moving in that 
direction. In a frictionless environment, the only forces acting on the ball would be those due to 
gravity and its inertia/motion (17th trial). 

The ball is moving along the channel, so there is indeed a force acting in the direction of the motion 
due to the ball’s inertia (19th trial). 

Another instance of the impetus idea is revealed in item 30, where despite a very strong wind, a tennis 
player manages to hit a tennis ball with her racquet so that the ball passes over the net and lands in her 
opponent’s court. The question asks which of the forces, (1) the downward force of gravity, (2) a force by the 
“hit,” and (3) a force exerted by the air, are acting on the tennis ball after it has left contact with the racquet 
and before it touches the ground. Several examples including the impetus concept provided by GPT-4 are as 
follows:  

The force from the hit, which is the initial force that set the ball into motion, still influences the ball’s 
trajectory until other forces neutralize it (7th trial). 

The force of the hit (2) is what initially propelled the ball into motion and the effects of this force 
continue to act on the ball until other forces nullify it (17th trial). 

The ball is also experiencing a forward force from the hit, which propels it over the net (22nd trial). 

The force of the hit propels the ball forward and is the reason the ball continues to move after 
contact with the racket has ceased (25th trial). 

Another instance of the impetus claim is found in item 11. For example, in the 18th trial, GPT-4 claims that 
there is a horizontal force acting on the puck due to the kick delivered. The associated reasoning is as follows:  

The correct answer is (B), a downward force of gravity and a horizontal force in the direction of 
motion. The main forces acting on the puck are the constant horizontal force applied by the kick 
and the constant downward force of gravity. There’s no upward force from the surface since the 
puck is on a frictionless surface, which means there’s no normal force acting opposite to gravity. 

Interesting Behaviors of GPT4 

Sometimes GPT-4 exhibits interesting behavior by presenting both correct and incorrect reasoning 
together. This is evident, for example, in the response to item 8. The following is the result from the 32nd trial: 
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The correct answer is (E). When the puck receives a horizontal kick, it gains a horizontal velocity 
component while maintaining its initial vertical velocity due to gravity. The combination of these 
two perpendicular velocity components (horizontal from the kick and vertical from gravity) results 
in a diagonal path. The puck will follow a parabolic trajectory because of the influence of gravity 
pulling it downwards as it moves horizontally, which is shown in option (E). 

As seen in the above reasoning, GPT-4 initially provides the correct answer but then makes a mistake by 
integrating gravity into its explanation. 

Another interesting behavior is that GPT-4 initially makes a mistake and then corrects itself. For example, 
in item 9, the 40th trial is as follows:  

The speed of the puck just after it receives the kick is (C) equal to the arithmetic sum of the speeds 
“v₀” and “vₓ”. Since the puck was already moving with speed “v₀” and receives an additional 
horizontal speed “vₓ” from the kick, the total speed immediately after the kick can be found by using 
the Pythagorean theorem for the resultant velocity vector because the two velocities are 
perpendicular to each other. The arithmetic sum is not correct because speed is a scalar quantity 
that doesn’t involve direction. 

It initially claims the arithmetic sum of the speeds, then corrects itself by incorporating the Pythagorean 
theorem, and finally explains why the initial analysis was not correct by stating that speed is a scalar quantity 
that doesn’t involve direction. 

GPT4’s Extremely Successful Instances 

In some of the mechanics concepts, GPT-4 is extremely successful. For example, except for four incorrect 
responses in item 28, it provided correct and informative results in items 4, 15, 16, and 28, which include 
concepts related to Newton’s third law. For instance, in the second trial of the fourth item, GPT-4 provided the 
following reasoning: 

The correct answer is (E) the truck exerts the same amount of force on the car as the car exerts on 
the truck. This is because according to Newton’s Third Law of Motion, whenever two objects 
interact, they exert equal and opposite forces on each other. So, when a large truck collides head-
on with a small compact car, the force exerted by the truck on the car is equal in magnitude and 
opposite in direction to the force exerted by the car on the truck. The difference in damage between 
the truck and the car is due to the differences in their masses and the resultant accelerations from 
the forces, not because of a difference in the magnitude of the forces. 

Similarly, in 15th and 16th items, it provided following reasonings: 

For question 15, the correct answer is (A): the amount of force with which the car pushes on the 
truck is equal to that with which the truck pushes back on the car. This is based on Newton’s third 
law of motion, which states that for every action, there is an equal and opposite reaction. So the 
force the car exerts on the truck is matched by an equal force exerted by the truck on the car. 

For question 16, the correct answer is also (A): the amount of force with which the car pushes on 
the truck is equal to that with which the truck pushes back on the car. Even when the car and truck 
have reached a constant cruising speed, Newton’s third law still applies. The forces between them 
remain equal and opposite, regardless of whether they are accelerating or moving at a constant 
speed. 

DISCUSSION 

The assessment of GPT-4’s performance on the FCI indicates its strengths in certain areas of physics while 
also revealing significant areas for improvement. The analysis of false positives, false negatives, conceptual 
mistakes, and difficulties with figures and horizontal planes stresses the need for further refinement of GPT-
4’s understanding of physics concepts. Nonetheless, its success in correctly applying Newton’s laws 



 
Aldazharova et al. 

12 / 16 Contemporary Educational Technology, 16(4), ep538 
 

demonstrates its potential as a valuable tool for physics education, provided that its limitations are 
acknowledged and addressed. 

Our findings align with previous research on AI and education. Studies have shown that AI models, 
including GPT-4, can perform well on standard problems but struggle with conceptual understanding (Bengio 
et al., 2020; Schoenfeld, 2018). This study confirms these results, highlighting GPT-4’s limitations in handling 
conceptual questions involving figures and spatial reasoning.  

Additionally, research by Mahligawati et al. (2023), and Wink and Bonivento (2023) indicate the potential 
of AI to revolutionize physics education by providing related instructional support and feedback, helping 
students overcome common misconceptions and deepen their understanding of core principles. However, 
studies by Polverini and Gregorcic (2024) and Kortemeyer (2023) also highlight the challenges AI faces in 
interpreting visual information and applying conceptual knowledge, which this study corroborates. 

An unexpected result was the frequency of false negatives in GPT-4’s responses. While GPT-4’s reasoning 
was often correct, its answers were incorrect due to misinterpretations of the questions or figures. This finding 
suggests that GPT-4’s underlying algorithms may not fully grasp the important points of physical concepts, 
especially those involving visual elements. This result is significant as it points out the limitations of current AI 
models in educational settings, particularly in subjects requiring deep conceptual understanding. 

Examining GPT-4’s responses to the FCI can provide strong evidence for the validity and reliability of this 
widely-used diagnostic tool. By analyzing the AI’s performance, we can identify patterns in both correct and 
incorrect answers, which may point out underlying issues in the question design or common misconceptions 
that are not adequately addressed. For instance, if GPT-4 consistently selects incorrect answers with plausible 
reasoning, this could indicate ambiguities in the questions or reveal deeper misconceptions that students 
might also hold. Enhancing the educational instruments’ validity and reliability through such analysis can lead 
to more accurate assessments of students’ conceptual understanding, ultimately informing more effective 
instructional strategies and interventions. Furthermore, this approach aligns with the growing body of 
research emphasizing the importance of robust assessment tools in education (Hestenes et al., 1992; 
McDermott & Redish, 1999). As AI continues to evolve, benefiting from its capabilities to refine educational 
assessments holds significant potential for improving learning outcomes (Holmes et al., 2019). 

A question that may arise from readers is whether there were common topics on which GPT-4 performed 
well or poorly. First, the items that resulted in completely incorrect answers were all questions that included 
drawings (Q6, Q7, Q12, and Q14). Referring to the original FCI article (Table I), question 6 and question 7 
pertain to the same Newtonian concept (impulsive force), while questions 12 and 14 are related to different 
concepts. Second, again referring to the original FCI article, the items on which GPT-4 performed well or poorly 
did not group according to either Newtonian concepts (Table I in the original article) or the taxonomy of 
misconceptions (Table II in the original article).  

On the other hand, in 40 trials, the absence of correct answers in items Q6, Q7, Q12, and Q14 is a significant 
issue for AI-assisted learning. This raises substantial doubts about the validity of GPT-4. Additionally, in 40 
trials, GPT-4 was 100% successful in items Q1, Q2, Q4, Q13, Q15, Q16, Q17, Q18, Q22, Q24, and Q25. This 
varied performance highlights the complex nature of GPT-4’s understanding of physics concepts, revealing 
patterns of strengths and weaknesses in its reasoning capabilities.  

CONCLUSIONS 

This study investigated the comparative performance of GPT-4 on the FCI to analyze false positives, false 
negatives, and reasoning patterns. Key findings include: First, GPT-4 exhibited a high level of proficiency in 
several FCI items, particularly those related to Newton’s third law, achieving perfect scores on many items. 
However, it struggled significantly with questions involving the interpretation of figures and spatial reasoning. 
Second, GPT-4 demonstrated a higher occurrence of false negatives (correct reasoning but incorrect answers) 
compared to false positives (incorrect reasoning but correct answers). Third, GPT-4 displayed several 
conceptual errors, such as misunderstanding the effect of friction and retaining the outdated impetus theory 
of motion. The study reveals that while GPT-4 can provide accurate answers, it often lacks deep conceptual 
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understanding, leading to false negatives. This suggests that while AI can be a valuable tool in education, it 
still requires significant refinement to match human problem-solving skills fully. 

The potential of AI to promote higher-order learning extends beyond its traditional role as an information 
retrieval tool. In this study, we explored how GPT-4, an advanced AI model, can contribute to deeper 
conceptual understanding in physics. While AI is often perceived primarily as a means to enhance recall and 
provide factual information, our analysis of GPT-4’s performance on the FCI indicates its capacity to engage 
with complex reasoning and problem-solving tasks. These findings suggest that AI-driven tools can be 
designed to support and enhance conceptual learning, making them valuable assets in educational settings 
aimed at fostering deeper understanding rather than mere memorization (Anderson et al., 2001). This aligns 
with the broader educational goal of promoting critical thinking and problem-solving abilities among 
students.  

The FCI, while widely used, may not fully capture the breadth of GPT-4’s conceptual understanding and 
reasoning skills. Additionally, the study relied on the accuracy of AI’s responses to the FCI without considering 
its performance on other types of assessments. GPT-4’s performance may not fully represent the capabilities 
of AI in education, as different models and versions may exhibit varying levels of proficiency. 

AI can provide immediate feedback and alternative explanations that human teachers might not consider, 
while human learners can offer insights into the nuanced understanding of concepts that AI lacks. This 
synergy can lead to more effective learning experiences. 

Future research can identify the discrepancies between AI and student responses, revealing potential 
ambiguities or weaknesses in the questions. This process will allow for refinement and better alignment with 
educational goals. 
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APPENDIX A: GPT4’S ANSWERS 

 
 

Table A1. GPT4’s answers 
Q CA G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 
Q1 С C C C C C C C C C C C C C C C C C C C C 
Q2 А A A A A A A A A A A A A A A A A A A A A 
Q3 С C C C C C E C C C C C C C C C C C C C C 
Q4 Е E E E E E E E E E E E E E E E E E E E E 
Q5 B E C E E B D B D D B E B C E D E C B E B 
Q6 B E E C E C E C C C C C C E C E C E C C E 
Q7 B C C C C C C C C C C C C C C C C C C C C 
Q8 B E E E E E E E E E E C E E E E E E E E E 
Q9 E D E E E E E E E E C E E E C E E C C E D 
Q10 A A A A A A A A A A A B C C B C D A E C A 
Q11 D E E E E E E E E E E D D C D A C D B D C 
Q12 B C C C C C C C D C D C C C C C C C C C C 
Q13 D D D D D D D D D D D D D D D D D D D D D 
Q14 D B B C B C C B C C B C B C C C C B C C C 
Q15 A A A A A A A A A A A A A A A A A A A A A 
Q16 A A A A A A A A A A A A A A A A A A A A A 
Q17 B B B B B B B B B B B B B B B B B B B B B 
Q18 B B B B B B B B B B B B B B B B B B B B B 
Q19 E C C C C C C C C D C D D D C E D C C E D 
Q20 D A A B B A B C A C B B B B B B B B A B B 
Q21 E E E C E B E D E E E E D D E E E D E B B 
Q22 B B B B B B B B B B B B B B B B B B B B B 
Q23 B A A E A E A C A A A D E A D D A C A C D 
Q24 A A A A A A A A A A A A A A A A A A A A A 
Q25 C C C C C C C C C C C C C C C C C C C C C 
Q26 E B B E B B B B E B B E E C E B C C E E C 
Q27 C C C C C C C C C C C C C C C C C C B C C 
Q28 E E E E E E C E E E E E E E E E E E E E E 
Q29 B D D B D D D D B D D D D D B D B D D D B 
Q30 C E E C E D E E C E A D D E E E C E E E E 
Q CA G21 G22 G23 G24 G25 G26 G27 G28 G29 G30 G31 G32 G33 G34 G35 G36 G37 G38 G39 G40 
Q1 С C C C C C C C C C C C C C C C C C C C C 
Q2 А A A A A A A A A A A A A A A A A A A A A 
Q3 С C C C C C C C C C C C C C C C C C C C C 
Q4 Е E E E E E E E E E E E E E E E E E E E E 
Q5 B E B B B D A B B B E D C C B C B B B B B 
Q6 B C C E D C E C C C C C E E C E C C C E E 
Q7 B C C C C C C C C C C C C C C C C C C C C 
Q8 B C E E C C E C E E C E E E E E B E E E E 
Q9 E E C C E E E E B D E C C C C B E C E C C 
Q10 A B D A A A A A A A C D B D D A C E D D A 
Q11 D A B D D D D D D B B B D A C C D D C A C 
Q12 B C C C C C C C C C C C C C C C C C C C C 
Q13 D D D D D D D D D D D D D D D D D D D D D 
Q14 D C C C C C C C C C C B B C C C B C C B C 
Q15 A A A A A A A A A A A A A A A A A A A A A 
Q16 A A A A A A A A A A A A A A A A A A A A A 
Q17 B B B B B B B B B B B B B B B B B B B B B 
Q18 B B B B B B B B B B B B B B B B B B B B B 
Q19 E D C C C C C C C C D C C C C D C D C C D 
Q20 D C B D B B B B C B B B B A C B B A B C B 
Q21 E E E E E E E E D D E B E E E E E E E E E 
Q22 B B B B B B B B B B B B B B B B B B B B B 
Q23 B A D C A A A D B B C D D A A A A A A A A 
Q24 A A A A A A A A A A A A A A A A A A A A A 
Q25 C C C C C C C C C C C C C C C C C C C C C 
Q26 E C C C E C D E D C E C B C E B C D B C A 
Q27 C C C C C C C C C C C C C C C C C C C B C 
Q28 E E E E E E E E E E E E E E E E E E C E E 
Q29 B B D D D D D D D B D D D D D D D D D D D 
Q30 C C E E E E D D E E E E E E D D E C D D D 
Note. Yellows are false negatives; Greens are false positives; Q: Question; CA: Correct answer; G: GPT. 
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